
Linear Algebra I

30/01/2014, Thursday, 9:00-12:00

You are NOT allowed to use any type of calculators.

 (7+8=15 pts) Linear equations

Three people play a game in which there are always two winners and one looser. They have
the understanding that the loser gives each winner an amount equal to what the winner already
has. After three games, each has lost just once and each has e 24.

(a) Let xk be the amount of money Player k begins with. Assume that Player 1 has lost the first
game, Player 2 the second game, and Player 3 the third game. Write down three equations
in terms of x1, x2, and x3 for the amount of money each has after three games.

(b) Solve the linear equations obtained above to determine x1, x2, and x3.

Required Knowledge: linear equations, Gauss-elimination, row reduced echelon
form.

Solution:

1a: After the first round of game, the players will have

Player 1: x1 − (x2 + x3) = x1 − x2 − x3
Player 2: x2 + x2 = 2x2

Player 3: x3 + x3 = 2x3

as Player 1 has lost the round. After the second round, they will have

Player 1: (x1 − x2 − x3) + (x1 − x2 − x3) = 2x1 − 2x2 − 2x3

Player 2: 2x2 − (x1 − x2 − x3)− 2x3 = −x1 + 3x2 − x3
Player 3: 2x3 + 2x3 = 4x3

and after the third

Player 1: (2x1 − 2x2 − 2x3) + (2x1 − 2x2 − 2x3) = 4x1 − 4x2 − 4x3

Player 2: (−x1 + 3x2 − x3) + (−x1 + 3x2 − x3) = −2x1 + 6x2 − 2x3

Player 3: 4x3 − (2x1 − 2x2 − 2x3)− (−x1 + 3x2 − x3) = −x1 − x2 + 7x3

as the losers are respectively, Player 2 and 3. As they all have e 24 after three rounds, we arrive
at the linear equation:

4x1 − 4x2 − 4x3 = 24

−2x1 + 6x2 − 2x3 = 24

−x1 − x2 + 7x3 = 24.

1b: We first form the augmented matrix:
−1 −1 7

... 24

−2 6 −2
... 24

4 −4 −4
... 24





Then, we perform row operations to put the augmented matrix into the reduced row echelon form:
−1 −1 7

... 24

−2 6 −2
... 24

4 −4 −4
... 24

 1st=−1×1st−−−−−−−−→


1 1 −7

... −24

−2 6 −2
... 24

4 −4 −4
... 24




1 1 −7
... −24

−2 6 −2
... 24

4 −4 −4
... 24

 2nd=2×1st+2nd−−−−−−−−−−−→


1 1 −7

... −24

0 8 −16
... −24

4 −4 −4
... 24




1 1 −7
... −24

0 8 −16
... −24

4 −4 −4
... 24

 3rd=−4×1st+3rd−−−−−−−−−−−−→


1 1 −7

... −24

0 8 −16
... −24

0 −8 24
... 120




1 1 −7
... −24

0 8 −16
... −24

0 −8 24
... 120

 2nd= 1
8×2nd−−−−−−−−→


1 1 −7

... −24

0 1 −2
... −3

0 −8 24
... 120




1 1 −7
... −24

0 1 −2
... −3

0 −8 24
... 120

 3rd= 1
8×3rd−−−−−−−−→


1 1 −7

... −24

0 1 −2
... −3

0 −1 3
... 15




1 1 −7
... −24

0 1 −2
... −3

0 −1 3
... 15

 3rd=2nd+3rd−−−−−−−−−→


1 1 −7

... −24

0 1 −2
... −3

0 0 1
... 12




1 1 −7
... −24

0 1 −2
... −3

0 0 1
... 12

 2nd=2×3rd+2nd−−−−−−−−−−−−→


1 1 −7

... −24

0 1 0
... 21

0 0 1
... 12




1 1 −7
... −24

0 1 0
... 21

0 0 1
... 12

 1st=7×3rd+1st−−−−−−−−−−→


1 1 0

... 60

0 1 0
... 21

0 0 1
... 12




1 1 0
... 60

0 1 0
... 21

0 0 1
... 12

 1st=−1×2nd+1st−−−−−−−−−−−−→


1 0 0

... 39

0 1 0
... 21

0 0 1
... 12

 .

There are no free variables and hence the solution is unique: x1 = 39, x2 = 21, and x3 = 12.



 (12+3=15 pts) Partitioned matrices and matrix inverse

Let

M =

[
A C
0 B

]
where all four blocks are n× n matrices.

(a) If A and B are nonsingular matrices, show that M must also be nonsingular and that M−1

must be of the form

M−1 =

[
A−1 D

0 B−1

]
for some n× n matrix D.

(b) Determine D.

Required Knowledge: nonsingular matrices, inverse of a matrix, partitioned ma-
trices.

Solution:

2a: Let z ∈ R2n be a vector such that Mz = 0. Partition z as follows:

z =

[
x
y

]
where x, y ∈ Rn. Then, we have

0 = Mz =

[
A C
0 B

] [
x
y

]
=

[
Ax+ Cy

By

]
.

Hence, we get Ax + Cy = By = 0. It follows from nonsingularity of B that y = 0. Then, we
get Ax = 0. Since A is nonsingular, this can happen only if x = 0. Therefore, we have z = 0.
Consequently, M is nonsingular.

Let the inverse of M be given by

M−1 =

[
U W
X Y

]
where all four blocks are n× n matrices. Note that

I = MM−1 =

[
A C
0 B

] [
U W
X Y

]
=

[
AU + CX AW + CY

BX BY

]
.

This yields the following equations:

AU + CX = I

BX = 0

BY = I.

Since B is nonsingular, we get X = 0, Y = B−1, and AU = I. Since A is nonsingular, the latter
results in U = A−1. Therefore, M−1 is of the form

M−1 =

[
A−1 D

0 B−1

]
for some matrix D.

2b: Note that

I = MM−1 =

[
A C
0 B

] [
A−1 D

0 B−1

]
=

[
I AD + CB−1

0 I

]
.

This yields AD + CB−1 = 0. By multiplying from left by A−1, we obtain D = −A−1CB−1.



 (3+3+3+3+3=15 pts) Matrices and their properties

Let M be an 4× 4 matrix with the characteristic polynomial pM (λ) = λ(λ− 1)(λ2 + 1).

(a) Is M nonsingular? Explain.

(b) Determine the eigenvalues of M .

(c) Determine the determinant of M .

(d) Determine the rank of M .

(e) Is M diagonalizable? Explain.

Required Knowledge: nonsingularity, eigenvalues, determinant, rank, diagonal-
izability.

Solution:

3a: A square matrix is singular if and only if one of its eigenvalues is zero. Since M has a zero
eigenvalue, it has to be singular.

3b: Eigenvalues of a square matrix are the roots of its characteristic polynomial. By solving
pM (λ) = 0, we get λ1 = 0, λ2 = 1, and λ3,4 = ±i as eigenvalues.

3c: The determinant is equal to the product of the eigenvalues. Then, we get det(M) = 0.

3d: Every eigenvector corresponding a nonzero eigenvalue belong to the column space of the
matrix. Since eigenvectors corresponding to distinct eigenvalues are linearly independent and M
has three distinct nonzero eigenvalue, there must at least three linearly independent vectors in the
column space of M . Then, we have

rank(M) = dim(R(M)) > 3.

Since every eigenvctor corresponding to the zero eigenvalue must belong to the null space of M ,
we have

null(M) = dim(N (M)) > 1.

From the rank-nullity theorem, we know that

rank(M) + null(M) = 4.

Together with the above inequalities, this implies that

rank(M) = 3 and null(M) = 1.

3e: Since M has distinct eigenvalues, it is diagonalizable.



 (3+3+3+3+3=15 pts) Vector spaces

Consider the vector space of k×k matrices, i.e. Rk×k. Let Nk denote the set of all nonsingular
k × k matrices, Sk denote the set of all k × k symmetric matrices, and Tk denote the set of all
k × k skew-symmetric matrices.

(a) Show that Nk is not a subspace of Rk×k. Show that both Sk and Tk are subspaces of Rk×k.

(b) Determine a basis for S3 as well as its dimension. What would be the dimension of Sk?

(c) Determine a basis for T3 as well as its dimension. What would be the dimension of Tk?

(d) Show that Rk×k is the direct sum of Sk and Tk, that is Rk×k = Sk ⊕ Tk.

(e) Let L : Rk×k → Rk×k be the transformation given by L(A) =
A+AT

2
. Show that L is a

linear transformation.

Hint: A square matrix M is called skew-symmetric if M = −MT .

Required Knowledge: vector spaces, subspaces, basis, dimension, direct sum,
linear transformations.

Solution:

4a: Both Ik and −Ik are nonsingular and hence in Nk, but Ik + (−Ik) = 0 is not nonsingular.
This means that the set of nonsingular matrices Nk is not closed under matrix addition. As such,
Nk is not a subspace.

Clearly, the zero matrix is symmetric and skew-symmetric at the same time. This means that
both Sk and Tk are not empty sets. Since (A+B)T = AT +BT and (αA) = αAT for all matrices
A, B and scalars α. As such, we can conclude that both Sk and Tk are closed under matrix
addition and scalar multiplication. Consequently, they are both subspaces.

4b: A matrix M belongs to S3 if and only if it is of the form

M =

a b c
b d e
c e f


for some real numbers a, b, c, d, e, and f . Then, we have

M = a

1 0 0
0 0 0
0 0 0

+ b

0 1 0
1 0 0
0 0 0

+ c

0 0 1
0 0 0
1 0 0

+ d

0 0 0
0 1 0
0 0 0

+ e

0 0 0
0 0 1
0 1 0

+ f

0 0 0
0 0 0
0 0 1

 .
Therefore, we can conclude that the six matrices above span S3. Note that M = 0 if and only if
a = b = c = d = e = f = 0. As such, these six matrices are linearly independent. Consequently,
they form a basis for S3 and dim(S3) = 6.

The argument above suggests that the dimension of the subspace Sk would be the number of
diagonal elements plus half of the number of the off-diagonal elements, that is

dim(Sk) = k +
k2 − k

2
=
k2 + k

2
=
k(k + 1)

2
.

4c: A matrix M belongs to T3 if and only if it is of the form

M =

 0 a b
−a 0 c
−b −c 0





for some real numbers a, b, c, d, e, and f . Then, we have

M = a

 0 1 0
−1 0 0

0 0 0

+ b

 0 0 1
0 0 0
−1 0 0

+ c

0 0 0
0 0 1
0 −1 0

 .
In a similar fashion to the problem 4b, we can conclude that these three matrices form a basis and
hence dim(T3) = 3. In addition, the dimension of the subspace Tk would be half of the number of
the off-diagonal elements, that is

dim(Tk) =
k2 − k

2
=
k(k − 1)

2
.

4d: In order to prove that Rk×k = Sk ⊕ Tk, one needs to show that every k× k matrix M can
be written as a unique sum of two matrices P ∈ Sk and Q ∈ Tk. For a given matrix M , let

P =
M +MT

2
and Q =

M −MT

2
.

Note that

PT = (
M +MT

2
)T =

MT +M

2
= P and QT = (

M −MT

2
)T =

MT −M
2

= −Q.

In other words, P ∈ Sk and Q ∈ Tk. Observe that

P +Q =
M +MT

2
+
M −MT

2
= M.

Therefore, we proved that every matrix can be written as a sum of a symmetric and a skew-
symmetric matrix. To prove that this sum is unique. Let P ′ ∈ Sk and Q′ ∈ Tk be such that

M = P ′ +Q′.

Then, we have P + Q = P ′ + Q′. Equivalently, P − P ′ = Q′ − Q. Since both Sk and Tk are
subspaces, we can conclude that P − P ′ = Q′ −Q ∈ Sk ∩ Tk. In other words, the matrix P − P ′
is symmetric and skew-symmetric at the same time. This is possible only if P = P ′ and hence
Q = Q′.

4e: Note that

L(A+B) =
(A+B) + (A+B)T

2
=
A+AT

2
+
B +BT

2
= L(A) + L(B)

for any matrices A, B ∈ Rk×k.
Note also that

L(αA) =
αA+ (αA)T

2
=
αA+ αAT

2
= α

A+AT

2
= αL(A)

for any matrix A ∈ Rk×k and real number α.
Therefore, L is a linear transformation.



 (2+5+2+6=15 pts) Determinants and diagonalization

A tridiagonal matrix is a square matrix that has nonzero elements only on the main diago-
nal, the first diagonal below the main diagonal, and the first diagonal above the main diagonal.
Consider the sequence of tridiagonal matrices An ∈ Rn×n given by:

A1 = 3, A2 =

[
3 1
2 3

]
, A3 =

3 1 0
2 3 1
0 2 3

 , A4 =


3 1 0 0
2 3 1 0
0 2 3 1
0 0 2 3

 , A5 =


3 1 0 0 0
2 3 1 0 0
0 2 3 1 0
0 0 2 3 1
0 0 0 2 3

 , . . .
Let dn := det(An).

(a) Verify that d1 = 3 and d2 = 7.

(b) By using cofactor expansion, determine the numbers p and q such that dk = pdk−1 + qdk−2
for all k > 3.

(c) Note that

[
dk

dk−1

]
=

[
p q
1 0

] [
dk−1
dk−2

]
for all k > 3 where p and q are as obtained above. Define

M =

[
p q
1 0

]
. Show that dk =

[
1 0

]
Mk−2

[
d2
d1

]
for all k > 3.

(d) Determine a nonsingular matrix X and a diagonal matrix D such that X−1MX = D.
Determine Mk for all k > 0. Determine dk for all k > 1.

Required Knowledge: determinants, diagonalization.

Solution:

5a: By definition, we have

d1 = det(A1) = det(3) = 3 and d2 = det(A2) = det
( [3 1

2 3

] )
= 3 · 3− 1 · 2 = 7.

5b: Note that

dk = det(Ak)

= 3 det(Ak−1)− det
( [ 2 1 0 · · · 0

0k−2 Ak−2

] )
[Here 0k−2 denotes the zero vector of Rk−2]

= 3dk−1 − 2 det(Ak−2)

= 3dk−1 − 2dk−2.

for all k > 3. Therefore, p = 3 and q = −2.

5c: Note that [
d3
d2

]
= M

[
d2
d1

]
and

[
d4
d3

]
= M

[
d3
d2

]
= M2

[
d2
d1

]
.

By repeating the same argument above, we obtain[
dk

dk−1

]
= Mk−2

[
d2
d1

]
for all k > 3. By pre-multiplying by

[
1 0

]
, we obtain

dk =
[
1 0

]
Mk−2

[
d2
d1

]
.



5d: Note that

det(M − λI) = det
( [3− λ −2

1 −λ

] )
= λ2 − 3λ+ 2 = (λ− 1)(λ− 2).

Therefore, the eigenvalues of the matrix M are λ1 = 1 and λ2 = 2. To compute eigenvectors, we
should solve

0 = (M − λ1I)x1 =

[
2 −2
1 −1

]
x1

0 = (M − λ2I)x2 =

[
1 −2
1 −2

]
x2.

These would yield, for instance,

x1 =

[
1
1

]
and x2 =

[
2
1

]
.

Let X be defined by

X :=
[
x1 x2

]
=

[
1 2
1 1

]
.

Note that

X−1 =

[
−1 2

1 −1

]
and also that

X−1MX =

[
−1 2

1 −1

] [
3 −2
1 0

] [
1 2
1 1

]
=

[
1 0
0 2

]
= D.

Since M = XDX−1, we know that Mk = XDkX−1. Hence, we get

Mk =

[
1 2
1 1

] [
1k 0
0 2k

] [
−1 2

1 −1

]
=

[
2k+1 − 1 2− 2k+1

2k − 1 2− 2k

]
for all k > 0. Note that

dk =
[
1 0

]
Mk−2

[
d2
d1

]
=
[
1 0

] [2k−1 − 1 2− 2k−1

2k−2 − 1 2− 2k−2

] [
7
3

]
=
[
2k−1 − 1 2− 2k−1

] [7
3

]
= 7(2k−1 − 1) + 3(2− 2k−1)

= 4 · 2k−1 − 1

= 2k+1 − 1.

for all k > 3. Since d1 = 3 and d2 = 7, we have dk = 2k+1 − 1 for all k > 1.



 (15 pts) Least squares problem

Given the data

x −1 0 1 2
y 1.5 4.5 6.5 7.5

determine a line y = ax+ b that best fits the data in the least squares sense.

Required Knowledge: least-squares problem.

Solution:

From the table, we obtain the linear equations
−1 1

0 1
1 1
2 1

[ab
]

=


1.5
4.5
6.5
7.5

 .
The solution of the least-squares problem can be found by solving the following equation:

[
−1 0 1 2

1 1 1 1

]
−1 1

0 1
1 1
2 1

[ab
]

=

[
−1 0 1 2

1 1 1 1

]
1.5
4.5
6.5
7.5


[
6 2
2 4

] [
a
b

]
=

[
−1.5 + 6.5 + 15

1.5 + 4.5 + 6.5 + 7.5

]
=

[
20
20

]
[
3 1
1 2

] [
a
b

]
=

[
10
10

]
[
a
b

]
=

[
3 1
1 2

]−1 [
10
10

]
[
a
b

]
=

1

5

[
2 −1
−1 3

] [
10
10

]
[
a
b

]
=

1

5

[
10
20

]
=

[
2
4

]
.


